Mitotic UV Irradiation Induces a DNA Replication-Licensing Defect that Potentiates G1 Arrest Response

نویسندگان

  • Masayuki Morino
  • Kohei Nukina
  • Hiroki Sakaguchi
  • Takeshi Maeda
  • Michiyo Takahara
  • Yasushi Shiomi
  • Hideo Nishitani
چکیده

Cdt1 begins to accumulate in M phase and has a key role in establishing replication licensing at the end of mitosis or in early G1 phase. Treatments that damage the DNA of cells, such as UV irradiation, induce Cdt1 degradation through PCNA-dependent CRL4-Cdt2 ubiquitin ligase. How Cdt1 degradation is linked to cell cycle progression, however, remains unclear. In G1 phase, when licensing is established, UV irradiation leads to Cdt1 degradation, but has little effect on the licensing state. In M phase, however, UV irradiation does not induce Cdt1 degradation. When mitotic UV-irradiated cells were released into G1 phase, Cdt1 was degraded before licensing was established. Thus, these cells exhibited both defective licensing and G1 cell cycle arrest. The frequency of G1 arrest increased in cells expressing extra copies of Cdt2, and thus in cells in which Cdt1 degradation was enhanced, whereas the frequency of G1 arrest was reduced in cell expressing an extra copy of Cdt1. The G1 arrest response of cells irradiated in mitosis was important for cell survival by preventing the induction of apoptosis. Based on these observations, we propose that mammalian cells have a DNA replication-licensing checkpoint response to DNA damage induced during mitosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair.

Although most eukaryotes can arrest in G1 after ionizing radiation, the existence or significance of a G1 checkpoint in S. cerevisiae has been challenged. Previous studies of G1 response to chemical mutagens, X-ray or UV irradiation indicate that the delay before replication is transient and may reflect a strong intra-S-phase checkpoint. We examined the yeast response to double-stranded breaks ...

متن کامل

Checkpoint Kinase ATR Phosphorylates Cdt2, a Substrate Receptor of CRL4 Ubiquitin Ligase, and Promotes the Degradation of Cdt1 following UV Irradiation

The DNA replication-licensing factor Cdt1 is present during the G1 phase of the cell cycle. When cells initiate S phase or are UV-irradiated, Cdt1 is recruited to chromatin-bound PCNA and ubiquitinated by CRL4(Cdt2) for degradation. In both situations, the substrate-recognizing subunit Cdt2 is detected as a highly phosphorylated form. Here, we show that both caffeine-sensitive kinase and MAP ki...

متن کامل

pRB plays an essential role in cell cycle arrest induced by DNA damage.

To maintain genome stability, cells with damaged DNA must arrest to allow repair of mutations before replication. Although several key components required to elicit this arrest have been discovered, much of the pathway remains elusive. Here we report that pRB acts as a central mediator of the proliferative block induced by a diverse range of DNA damaging stimuli. Rb-/- mouse embryo fibroblasts ...

متن کامل

p16 Gene Transfer Induces Centrosome Amplification and Abnormal Nucleation Associated with Survivin Downregulation in Glioma Cells.

OBJECTIVE In human glioma cells, p16 gene transfer induced G1/S arrest, increased radiosensitivity and abnormal nucleation (especially bi- and multinucleation). Survivin suppression caused G2/M arrest, radiosensitization and an increase in aneuploidy accompanied by centrosome amplification. Abnormal nucleation and aneuploidy represent chromosome instability (CIN), and it is well known that cent...

متن کامل

Phosphorylation-triggered CUEDC2 degradation promotes UV-induced G1 arrest through APC/C(Cdh1) regulation.

DNA damage triggers cell cycle arrest to provide a time window for DNA repair. Failure of arrest could lead to genomic instability and tumorigenesis. DNA damage-induced G1 arrest is generally achieved by the accumulation of Cyclin-dependent kinase inhibitor 1 (p21). However, p21 is degraded and does not play a role in UV-induced G1 arrest. The mechanism of UV-induced G1 arrest thus remains elus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015